name		block	Week x Week	#30A:	4/24 - 5/1	2015
Solve each problem.	Make sure that you show	w ALL WORK	involved in solving the	problem	in order to g	et full credit.

Write the equation of the line graphed above in:

Slope-Intercept:

Point-Slope:

Standard: _____

Write the equation of the line that is perpendicular to the line ←graphed here and goes through the point (-1,-1) in:

Slope-Intercept: _____

Point-Slope: _____

Standard: _____

The cost to mail a box of books can be modeled by the function f(x) = 1.75x + 5.25, where x is the number of books mailed. What could the y-intercept of the function represent?

Find the volume of the following figure:

name		block	_ Week x Week #30	OA: 4/24 – 5/1, 2015
Solve each problem.	Make sure that you show ALL	WORK involved	in solving the problen	n in order to get full credit.

Write the equation of the line graphed above in:

Slope-Intercept: _____

Point-Slope:

Standard: _____

Write the equation of the line that is perpendicular to the line ←graphed here and goes through the point (-1,-1) in:

Slope-Intercept: _____

Point-Slope:

Standard:

The cost to mail a box of books can be modeled by the function f(x) = 1.75x + 5.25, where x is the number of books mailed. What could the y-intercept of the function represent?

Find the volume of the following figure:

Solve the following quadraticlinear system of equations using a method of your choice:

$$y + 1 = x$$

 $y = -x^2 + 2x + 5$

Suppose you launch a model rocket with an upward starting velocity of v ft/s. You can use the equation $h = -16t^2 + vt$ to find the rocket's altitude h feet t seconds after launch. Suppose the upward starting velocity is 160 ft/s. When will the rocket hit the ground?

Pop's Cycle Shop sells bicycles and tricycles. The number of bicycles is 1 less than 4 times the number of tricycles. All the bicycles and tricycles together have a total of 174 wheels. How many bicycles are there?

Simplify:

$$\bullet \frac{(2^{-3})^{-1}d^{-2}e^0f^5}{(2^{-2})^{-1}d^{-1}e^6f^{-2}}$$

• $4(2x-2)^2$

Mr. Dean drove 211 miles in 4 hours and 30 minutes. Find his rate in miles per minute.

Solve (Round to the nearest hundredth if necessary):

$$7p^2 - 6p + 1 = 0$$

Solve the following quadraticlinear system of equations using a method of your choice:

$$y + 1 = x$$

 $y = -x^2 + 2x + 5$

Suppose you launch a model rocket with an upward starting velocity of v ft/s. You can use the equation $h = -16t^2 + vt$ to find the rocket's altitude h feet t seconds after launch. Suppose the upward starting velocity is 160 ft/s. When will the rocket hit the ground?

Pop's Cycle Shop sells bicycles and tricycles. The number of bicycles is 1 less than 4 times the number of tricycles. All the bicycles and tricycles together have a total of 174 wheels. How many bicycles are there?

Simplify:

$$\bullet \frac{(2^{-3})^{-1}d^{-2}e^0f^5}{(2^{-2})^{-1}d^{-1}e^6f^{-2}}$$

• $4(2x-2)^2$

Mr. Dean drove 211 miles in 4 hours and 30 minutes. Find his rate in miles per minute.

Solve (Round to the nearest hundredth if necessary):

$$7p^2 - 6p + 1 = 0$$

